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Abstract—Telomerase is a ribonucleoprotein enzyme that elongates telomeres and therefore maintains chro-
mosomal stability in germ lines, as well as in the majority of cancer cells during cell doubling. However, up to
30% of human tumors of different types do not express telomerase but instead use an alternative lengthening
of telomeres (ALT). Here we show that human tumor-derived ALT cell lines express a LINE-1 (L1) retro-
transposon. This indicates its participation in telomere maintenance, possibly, by a slippage mechanism
during telomeric DNA synthesis. Moreover, the suppression of L1-encoded reverse transcriptase activity by
antisense strategy or treatment of ALT cells with reverse transcriptase inhibitor 3'-azido-2',3'-dideoxythymi-
dine (AZT) induces progressive telomere shortening, arrest in G2 phase of the cell cycle, and, eventually,
cancer cell death. This finding suggests a unique opportunity to cure cancer in a number of cases.
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INTRODUCTION
An asymmetry in the synthesis of leading and lag-

ging DNA strands leads to the end-replication prob-
lem of linear genomes [1]. To overcome this problem,
eukaryotic chromosomes have specialized end struc-
tures, telomeres, consisting of TTAGGG repeats [2].
A gradual loss of DNA from the ends of telomeres
during cell doubling was associated with control of the
proliferative potential of somatic cells [14]. In con-
trast, generative lines [29] and the majority of cancer
cells [17] express a special enzyme (telomerase) that
elongates telomeres, thereby maintaining chromo-
some stability [10]. Telomerase inhibition limits the
growth of human cancer cells [13]. However, not all
cancer cells express telomerase. It was shown that telo-
merase negative cells have very long and heteroge-
neous telomeres along with immortalization, presum-
ably, due to one or more mechanisms of alternative
lengthening of telomeres (ALT) [24]. The presence of
ALT was reported in 30% of human tumors of different
types, tumor-derived cell lines and human cell lines
immortalized in vitro [4–6, 24], and up to 50% in
some tumor subtypes [12]. The nature of the ALT
mechanism is still unclear, but the possible involve-
ment of homologous recombination between telo-
meres was reported [9]. At the same time, different
DNA polymerases, including HIV reverse transcrip-
tase, are able to elongate telomere DNA sequences
in vitro by slippage DNA synthesis [21], which leads to
the generation of products exceeding template DNA

by size. Since a protein encoded by the open reading
frame-2 (ORF2) of human L1 retrotransposon is a
true reverse transcriptase (L1-RT) [7, 8] and expres-
sion of the L1 retrotransposon and corresponding
activity of the reverse transcriptase in some human
tumors was reported [3, 19, 28], it can be assumed
that, after completion of retrotransposition of its own
RNA, L1-RT [16] can perform slippage during telo-
meric DNA synthesis and provide for maintenance of
extremely long telomeres in ALT cells.

MATERIALS AND METHODS
Cell lines. All cell lines used in the study were

obtained from American Type Culture Collection
(Rockville, MD). Osteosarcomas (Saos-2 and U-2 OS)
and cell lines of liver tumor (HEC-1) and cervical can-
cer (HeLa) were among the sources of the cells. The
cells were cultured according to ATCC recommenda-
tions. Cultural media were supplemented with 0.2 μM
3'-azido-2',3'-dideoxythymidine (AZT, Sigma) for cell
treatment [27].

Dot blotting. Total cellular RNA was isolated with
the use of a RNA-STA 60 solution (Tel-Test, Inc.).
The reaction was carried out with 30 μg of total RNA and
HRP North2South (Pierce) labeled pBS-L1RP-EGFP
plasmid [22] as a specific probe according to the man-
ufacturers protocol.

Bromodeoxyuridine (BrdU) incorporation. Cell
staining for BdU incorporation was performed on cells
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incubated with 10 mM BrdU (Sigma) for 2.5 h, stained
with BU-33 monoclonal anti-BrdU antibodies
(Sigma) and FITC-labeled goat anti-mouse IgG (H + L)
(Fab’) fragments (Molecular Probes), contrastained
with 50 μg/mL propidium iodide (PI, Sigma), and
analyzed by f low cytofluorimetry as described [26].

Telomere length measurement by flow cytometry.
The cells were stained with telomere-specific FITC
conjugated (C3TA2)3 PNA (Applied Biosystems)
probe and contrastained with 0.06 μg/mL PI as
described [20].

Inhibition of L1 reverse transcriptase by antisense
strategy. To obtain L1-specific reverse transcriptase
targeted antisense construct, PCR was constructed
with RT-F (5'-ATG ACA GGA TCA ACT TCA CAC-3'),
RT-R (5'-TCC TGC TTT CTC TTG TAG GCA-3')
primers and pBS-L1RP-EGFP plasmid as a template.
PCR product (929 bp) was cloned into pTargetT vector
(Promega). Recombinant constructs containing the
insert in sense and antisense orientation were purified
with a Plasmid Midi Kit (Qaigen), digested with Xmn I
(Promega), and transfected into U-2 OS cells with a
Lipofectamine (Gibco) according to the manufactur-
ers instructions. After 40 days of selection on media
containing 0.5 mg/mL of G418 (Gibco), the cells were
harvested, stained with PNA and PI, and analyzed by
flow cytometry [25].

RESULTS AND DISCUSSION

To detect L1-specific RNA in two cell lines (osteo-
sarcomas U-2 OS and Saos-2) that were reported [24]
to maintain telomeres by an ALT mechanism, total
mRNA was analyzed by dot blotting and a L1-retro-
transposon specific probe. Telomerase-positive cell
lines (HEC-1 and HeLa) were used for comparison
[17]. Both ALT cell lines gave a positive reaction in this
test. As expected, HEC-1 cells were completely nega-
tive. Analysis of HeLa cells showed only traces of L1
transcripts, as previously reported [19].

Further, to test the hypothesis, ALT cell lines were
treated with therapeutic concentrations of AZT in
order to determine if slippage telomeric DNA synthe-
sis could be inhibited by AZT-TP, followed by induced
telomere shortening. Telomere length in AZT-treated
and untreated cell lines was measured by f low cytom-
etry with a telomere-specific probe in the form of pep-
tide nucleic acid (PNA) [15, 25]. The cells were
stained with PI to determine the cell-cycle distribution
[25]. Both ALT cell lines demonstrated telomere
shortening (on average by 50%), massive apoptosis,
and G2 arrest 14 days after treatment with AZT. To
confirm the specificity of AZT-induced telomere
shortening for ALT cells, the HeLa cell line, which is
known to be telomerase-positive, was treated with
AZT under the same conditions. AZT at the chosen
concentration had no effect on telomere length or cell-
cycle distribution in HeLa cells.

To demonstrate telomere shortening and changes
in DNA synthesis intensity in dynamics, U-2 OS cells
were treated with AZT for different time intervals and
simultaneously analyzed by f low cytometry. The rate
of DNA synthesis was determined by BrdU incorpora-
tion. The results showed progressive telomere shorten-
ing (on average up to 50%) and decreased DNA syn-
thesis (on average by 40%). It is important to note that
changes in the cell-cycle distribution, DNA synthesis,
and telomere length were rapid and could be detected
10 days after AZT treatment.

At the same time PI staining demonstrated a higher
DNA content in AZT treated cells (on average by 25%) at
the latest stages of the treatment (21 and 40 days) as com-
pared with untreated cells. A rational explanation of
this fact is that short telomeres cause fusion of chro-
mosomes end-to-end.

To confirm the fact that ALT is conducted only by
L1 reverse transcriptase, U-2 OS cells were trans-
fected with expressing vectors containing part of
human L1-ORF2 in sense and antisense orientation.
The cells were harvested and analyzed by f low cytom-
etry after 40 days of selection with G418. The cells car-
rying the antisense construct, as expected, demon-
strated massive apoptosis, G2 arrest, and telomere
shortening. In contrast, the cells expressing the sense
construct showed no difference in telomere length or
cell cycle.

CONCLUSIONS
These data are in good agreement with other

reported cases of ALT mechanism suppression [23] or
telomerase inhibition [11]. Induction of apoptosis in
ALT cells treated with AZT seems to be p53 indepen-
dent, since U-2 OS and Saos-2 represent p53+/+ and
p53–/– cancer cell lines [8]. Since tumors with sup-
pressed elongation of telomeres lose proliferative
potential [14] and AZT is already in clinical use, these
findings provide a unique opportunity to treat up to
30% of cancer cases. Some other nucleoside reverse
transcriptase inhibitors (e.g. 2',3'-dideoxyinosine
(ddI) or 2',3'-didehydro-3'-deoxythymidine (d4T))
already in clinical practice could be also used.
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