scientific reports

Check for updates

OPEN Homology between SARS CoV-2 and human proteins

Vladimir Khavinson^{1,3}, Alexander Terekhov¹, Dmitry Kormilets² & Alexander Maryanovich

An extremely high contagiousness of SARS CoV-2 indicates that the virus developed the ability to deceive the innate immune system. The virus could have included in its outer protein domains some motifs that are structurally similar to those that the potential victim's immune system has learned to ignore. The similarity of the primary structures of the viral and human proteins can provoke an autoimmune process. Using an open-access protein database Uniprot, we have compared the SARS CoV-2 proteome with those of other organisms. In the SARS CoV-2 spike (S) protein molecule, we have localized more than two dozen hepta- and octamers homologous to human proteins. They are scattered along the entire length of the S protein molecule, while some of them fuse into sequences of considerable length. Except for one, all these n-mers project from the virus particle and therefore can be involved in providing mimicry and misleading the immune system. All hepta- and octamers of the envelope (E) protein, homologous to human proteins, are located in the viral transmembrane domain and form a 28-mer protein $E_{14.41}$ VNSVLLFLAFVVFLLVTLAILTALRLCA. The involvement of the protein E in provoking an autoimmune response (after the destruction of the virus particle) seems to be highly likely. Some SARS CoV-2 nonstructural proteins may also be involved in this process, namely ORF3a, ORF7a, ORF7b, ORF8, and ORF9b. It is possible that ORF7b is involved in the dysfunction of olfactory receptors, and the S protein in the dysfunction of taste perception.

The interaction of SARS CoV-2 with the host immune system is largely determined by the structural similarities between viral and host proteins. The studies of SARS CoV-2 are still focused on the S protein¹.

An extremely high contagiousness of the coronavirus SARS CoV-2 indicates that during its evolution the virus developed the ability to deceive the innate immune system. The simplest way to achieve this ability would be to incorporate into its membrane the proteins that share structural similarity with those which the immune system of the potential victim has learnt to ignore. Probably, the virus borrowed some n-mers from bats or other mammals. Any motif of any mammalian protein was suitable for borrowing, if only the immune system considered it to be of its own.

The knowledge of the homology between the SARS CoV-2 and human proteins would help understand the mechanisms of mimicry at the moment of infection. The SARS CoV-2 proteins may simulate human proteins, mislead the immune system, and slow down its response.

However, mimicry is not the only process that is determined by the protein homology between the virus and host organism. After the inevitable destruction of the virus particle, the proteins or their domains, which were inside the virus until then, come into contact with the immune system. With some structural similarity, a part of the immune response will be directed against the proteins of the host organism, i.e., an autoimmune response will arise.

This study aimed to identify the human proteins which share a significant structural homology with the SARS CoV-2 proteins. We hope this information will be useful to the developers of vaccines against coronavirus.

Joshua Lederberg² believed that "microbes and their human hosts constitute a superorganism." According to this, we considered the concept of "human proteins" as a combination of human own proteome and the proteomes of gut microbiota. We have paid particular attention to the proteins that are involved in the three functions that are almost necessarily affected in this disease, namely digestion, olfaction and taste.

¹Mechinkov North-Western State Medical University, 47 Piskaryovsky Prosp., 195067 St. Petersburg, Russia. ²Kirov Military Medical Academy, St. Petersburg, Russia. ³Saint Petersburg Institute of Bioregulation and Gerontology, St. Petersburg, Russia. [™]email: atm52atm52@gmail.com

Methods

Using an open-access protein database Uniprot and our original computer program Ouroboros³, we compared the SARS CoV-2 proteome⁴ with those of other organisms. We also searched for a separate database of 75,777 human proteins⁵. The algorithm we used compares primary sequences of SARS CoV-2 and human proteins, presented in the form of a one-letter code. We performed a comparison of proteins by a consecutive search for regions of one protein in the others, which is essentially a standard task of finding a substring in a string. This algorithm is implemented in standard methods of many programming languages, including Python, in which the main program was coded. The URL to the source code is provided above³.

When assessing the homology between the viral and human proteins, we took into account the presence of the common 7-/8-mers and especially their fusion into longer sequences. For example, 7-dimensional viruses, one of which is homologous to the human protein A, and the other to the protein B, can "overlap" at the ends, forming regions of 8 to 14 amino acid residues in length.

Results and discussion

Structural proteins. Spike glycoprotein. S protein, 1273 aa.

S protein, 1273 aa

MFVFLVLLPLVSSQCVNLTTRTQLPPAYTNSFTRGVYYPDKVFRSSVLHSTQDLFLPFFSNVTWFHAIHVSGTNGTKRFDNPVLPFNDGVYFASTEKSNIIRG WIFGTTLDSKTQSLLIVNNATNVVIKVCEFQFCNDPFLGVYHKNNKSWMESEFRVYSSANNCTFEYVSQPFLMDLEGKQGNFKNLREFVFKNIDGYFKIYSK HTPINLVRDLPQGFSALEPLVDLPIGINITRFQTLLALHRSYLPPGDSSSGMTAGAAYYVGYLQPRTFLLKYNENGTITDAVDCALDPLSETKCTKKSFVE KGIYQTSNFRVQPTESIVRFPNITNLCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAP GQTGKIADYNKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPYRVVVLSF ELLHAPATVCGPKKSTNLVKNKCVNFNFNGLTGTGVLTESNKKFLPFQQFGRDIADTTDAVRDPQTLEILDITPCSFGGVSVITPGTNTSNQVAVLYQDVNCT EVPVAIHADQLTPTWRVYSTGSNVFQTRAGCLIGAEHVNNSYECDIPIGAGICASYQTQTNSPRRARSVASQSIIAYTMSLGAENSVAYSNNSIAIPTNFTIS VTTEILPVSMTKTSVDCTMYICGDSTECSNLLLQYGSFCTQLNRALTGIAVEQDKNTQEVFAQVKQIYKTPPIKDFGGFNFSQILPDPSKPSKRSFIEDLLFN KVTLADAGFIKQYGDCLGDIAARDLICAQKFNGLTVLPPLTTDEMIAQYTSALLAGTITSGWTFGAGAALQIFFAMQMAYRFNGIGVTQNVLYENQKLIANQF NSAIGKIQDSLSSTASALGKLQDVVNQNAQALNTLVKQLSSNFGAISSVLNDILSRLDKVEAEVQIDRLITGRLQSLQTVYQQLIRAAEIRASANLAATKMS ECVLQQSKRVDFCGKGYHLMSFPQSAPHGVVFLHVTYVPAQEKNFTTAPAICHDGKAHFPREGVFVSNGTHWFVTQRNFYEPQIITTDNTFVSGNCDVVIGIV NNTVYDPLQPELDSFKEELDKYFKNHTSPDVDLGDISGINASVVNIQKEIDRLNEVAKNLNESLIDLQELGKYEQYIKWP<u>WYIWLGFIAGLIAIVMVTIMLCC</u> MTSCCSCLKGCCSCGSCCKFDEDDSEPVLKGVKLHYT

Hereinafter, regions homologous to human proteins are highlighted in red. Transmembrane tail $TM_{1214-1237}$ is underlined.

In the S protein molecule, we localized more than two dozen of 7-/8-mers homologous to human proteins (Table 1).

Fragments homologous to human proteins are scattered along the entire length of the S protein molecule, and some of them fuse in sequences of considerable length, namely 10-mers SPRRARSVAS₆₈₀₋₆₈₉, 11-mers GLTVLP-PLLTD₈₅₇₋₈₆₇ and two closely spaced 7-mers NASVVNI₁₁₇₃₋₁₁₇₉ and EIDRLNE₁₁₈₂₋₁₁₈₈. Octamer RRARSVAS₆₈₂₋₆₈₉ is located at the junction of the S1 and S2 subunits. All these n-mers stand out from the virus particles and may be involved in the effect of mimicry.

SARS CoV-2 can cause smell and taste dysfunction, as well as muscle injury⁶.

The 8-mer DEDDSEPV₁₂₅₇₋₁₂₆₄, located in the cytoplasmic tail, can be released during the destruction of the virus particle and get involved in orchestrating the immune system's response, directing a part of it to the homologous 8-mer in human unconventional myosin-XVI₁₄₀₄₋₁₄₂₁. The role of this mechanism in muscle dysfunction in coronavirus infection deserves a special investigation.

The 8-mer $RRARSVAS_{682-689}$ is homologous to the amiloride-sensitive sodium channel subunit alpha₂₀₁₋₂₀₈, which is involved in salt taste perception⁷.

With a high degree of probability, it can be argued that the S protein is involved in the process of mimicry. It may also take some part in provoking an autoimmune response.

We have checked the S protein homology across10 species, specifically primates, bats and some other mammals. The results are presented in Table entitled *Similarity of SARS CoV-2 spike glycoprotein structure with some mammalian proteins* in the electronic attachement. Probably, attention should be paid to the homologous regions common to SARS CoV-2, humans, and bats. The data presented so far do not allow us to derive a more general rule.

MYSFVSEETGTLIVN**SVLLFLA**FVVFLLVTLAILTALRLCAYCCNIVNVSLVKPSFYVYSRVKNLNSSRVPDLLV

Envelope small membrane protein. E protein, 75 aa (transmembrane domain₈₋₃₈ is underlined).

In the E protein molecule, we localized seven 7-mers and one 8-mer homologous to human proteins (Table 2). A fragment of the E_{8-38} protein transmembrane domain can be represented as follows:

ETGTLIVN**SVLLFLA**FVVFLLVTLAILTALRLCA

The size of the letters (point size) corresponds to the frequency of the viral 7-/8-mers in the human proteome. The protein E transmembrane domain contains 7-/8-mers, homologous to the proteins of some gut bacteria and even cereals, for example, corn, sorghum, wheat, and barley (Table 3).

$\frac{\text{Signal peptide (N-terminus)}_{1-13}}{\text{None}} \frac{-}{\text{DKVFRSS}_{40.46}} = \frac{-}{\text{Zinc finger protein 528}_{275-281}} \\ \frac{\text{DKVFRSS}_{55.61}}{\text{FLPFFSN}_{55.61}} = \frac{\text{OTU domain-containing protein 6A}_{185-191}}{\text{VSGTNGT}_{70.76}} = \frac{\text{Lysosome-associated membrane glycoprotein 1}_{171-17}}{\text{SLLIVNN}_{116-122}} = \frac{\text{ATP-binding cassette sub-family A member 10}_{825-83}}{\text{FKNLREF}_{186-192}} = \frac{1}{\text{Isovaleryl-CoA dehydrogenase, mitochondrial}_{77.83}}$
FLPFFSN ₅₅₋₆₁ OTU domain-containing protein 6A ₁₈₅₋₁₉₁ VSGTNGT ₇₀₋₇₆ Lysosome-associated membrane glycoprotein 1 ₁₇₁₋₁₇ SLLIVNN ₁₁₆₋₁₂₂ ATP-binding cassette sub-family A member 10 ₈₂₅₋₈₃
N-terminus domain NTD _{14,205} VSGTNGT ₇₀₋₇₆ Lysosome-associated membrane glycoprotein 1 ₁₇₁₋₁₇ SLLIVNN ₁₁₆₋₁₂₂ ATP-binding cassette sub-family A member 10 ₈₂₅₋₈₃
N-terminus domain NTD _{14 205} SLLIVNN ₁₁₆₋₁₂₂ ATP-binding cassette sub-family A member 10 ₈₂₅₋₈₃
N-terminus domain NTD _{14 205}
N-terminus domain N ID _{14.305} FKNLREF ₁₈₆₋₁₉₂ Isovaleryl-CoA dehydrogenase, mitochondrial ₇₇₋₈₃
TRFQTLL236-242 Disheveled-associated activator of morphogenesis 2
KIYSKHT ₂₀₂₋₂₀₈ Uncharacterized protein Clorf105 ₇₋₁₃
SSSGWTA ₂₅₄₋₂₆₀ Uncharacterized protein KIAA1109 (Fragment) ₆₁₀₋₆
Uncharacterized fragment ₃₀₆₋₃₁₈ None —
Recenter his ding domain PRD KLNDLCF ₃₈₆₋₃₉₂ Interleukin-7 ₁₄₉₋₁₅₅
Receptor-binding domain RBD ₃₁₉₋₅₄₁ DEVRQIA405-411 Histone-lysine N-methyltransferase 2C ₄₅₃₀₋₄₅₃₆
VYSTGSN635-641 Neural cell adhesion molecule L1-like protein341-347
Uncharacterized fragment ₅₄₂₋₇₈₇ IGAGICA ₆₆₆₋₆₇₂ Hepatitis A virus cellular receptor 2 ₂₀₅₋₂₁₁
SPRRARS ₆₈₀₋₆₈₆ Hermansky-Pudlak syndrome 1 protein ₂₅₈₋₂₆₄
RRARSVAS ₆₈₂₋₆₈₉ Amiloride-sensitive sodium channel subunit alpha ₂₀
Fusion peptide FP ₇₈₈₋₈₀₆ None —
VTLADAG ₈₂₆₋₈₃₂ Non-receptor tyrosine-protein kinase TNK1 ₄₄₀₋₄₄₆
Uncharacterized fragment ₈₀₇₋₉₁₁ GLTVLPP ₈₅₇₋₈₆₃ FH1/FH2 domain-containing protein 3 ₉₇₂₋₉₇₈
$\begin{array}{c} \text{LPPLLTD}_{861-867} \\ \text{Maestro heat-like repeat-containing protein family r} \\ \text{ber } 9_{250-256} \end{array}$
Unter anti-de surgest accurates 1 LID 1 SSTASAL ₉₃₉₋₉₄₅ 40S ribosomal protein S13 ₁₄₃₋₁₄₉
Heptapeptide repeat sequence 1 HR1 ₉₁₂₋₉₈₄ LVKQLSS ₉₆₂₋₉₆₈ E3 SUMO-protein ligase PIAS1 ₂₈₄₋₂₉₀
S2 KVEAEVQ986-974 Emilin-3 ₆₂₅₋₆₃₁
Uncharacterized fragment ₉₈₅₋₁₁₆₂ TGRLQSL ₉₉₈₋₁₀₀₄ Neuron navigator 3 ₁₆₁₀₋₁₆₁₆
LIRAAEI ₁₀₁₂₋₁₀₁₈ Unconventional myosin-XVIIIa ₁₃₅₂₋₁₃₅₈
LDKYFKN ₁₁₅₂₋₁₁₅₈ Follistatin-related protein 1 ₁₄₉₋₁₅₅
Heptapeptide repeat sequence 2 HR2 ₁₁₆₃₋₁₂₁₃ NASVVNI ₁₁₇₃₋₁₁₇₉ Thyroid adenoma-associated protein ₁₀₂₂₋₁₀₂₈
$\begin{array}{c} \text{Figure repeat sequence 2 FIK2}_{1163-1213} \\ \text{EIDRLNE}_{1182-1188} \end{array} \text{Protein SETSIP}_{64-70}; \text{Protein SET}_{54-60} \end{array}$
Transmembrane tail TM ₁₂₁₄₋₁₂₃₇ None –
Cytoplasm tail CT ₁₂₃₈₋₁₂₇₃ DEDDSEPV ₁₂₅₇₋₁₂₆₄ Unconventional myosin-XVI ₁₄₀₄₋₁₄₂₁

Table 1.	Localization of homologous 7-/8-mers in the S protein and human	proteins.
----------	---	-----------

E protein domains ^a	In E protein	In human proteins
Signal peptide (N-terminus domain) ₁₋₇	None	-
	VNSVLLF ₁₄₋₂₀	Heterogeneous nuclear ribonucleoprotein L ₁₉₁₋₁₉₇
	VNSVLLFL ₁₄₋₂₁	Ran-binding protein 6409-416
	NSVLLFL ₁₅₋₂₁	Lysosomal amino acid transporter 1 homolog ₁₃₃₋₁₃₉
Transmembrane domain ₈₋₃₈	SVLLFLA ₁₆₋₂₂	Cytochrome P450 $2B6_{4-10}$; Cytochrome P450 $2B7_{4-10}$; GPI ethanolamine phosphate transferase 3_{5-11}
	LAFVVFL ₂₁₋₂₇	Solute carrier family 15 member 4 ₂₃₅₋₂₄₁
	VFLLVTL ₂₅₋₃₁	Alpha-(1,3)-fucosyltransferase 10 ₂₀₋₂₆
	LAILTAL ₃₁₋₃₇	$Transient \ receptor \ potential \ cation \ channel \ subfamily \ M \ member \ 6_{394-400} \ ; \ Transient \ receptor \ potential \ cation \ channel \ subfamily \ M \ member \ 3_{465-471}$
	TALRLCA ₃₅₋₄₁ ^b	Protein disulfide-isomerase TMX3 ₈₋₁₄
Internal domain ₃₉₋₇₅	None	-

Table 2. Localization of homologous 7-/8-mers in the E protein and human proteins. ^aDomain boundaries see in⁸. ^bHeptamer TALRLCA₃₅₋₄₁ is located at the junction of the transmembrane domain₈₋₃₈ and internal domain₃₉₋₇₅.

The simulation targets may have been the proteins synthesized by a macroorganism itself or by its normal gut microbiota.

All protein E 7-/8-mers, homologous to proteins of humans, gut bacteria and cereals, are located in the transmembrane domain of the virus and form the 28-mer protein E_{14-41} . A random selection of 28 amino acid residues in a row would require an astronomical number of iterations: $20^{28} = 2.7 \cdot 10^{36}$.

In E protein In bacterial and plant proteins	
AFVVFLLV22-29 Lpp126 large-conductance mechanosensitive channel: Lactobacillus casei ₈₀₋₈₇ ; L. paracasei ₈₀₋₈₇ ; L. florum ₈₀₋₈₇	
TLAILTA30.36 Uncharacterized proteins: Zea mays90.164; Sorghum bicolor97.127; Triticum aestivum116-190; Hordeum volume	

Table 3. Localization of some of homologous 7-/8-mers in the E protein and human gut proteome.

.....

In M protein	In human proteins	
VEELKKL ₁₀₋₁₆	Glutared oxin-related protein 5, mitochondrial $_{135-141}$	
EELKKLL ₁₁₋₁₇	GDP-fucose protein O-fucosyltransferase 2 ₃₄₀₋₃₄₆	
ELKKLLE ₁₂₋₁₈	Cullin-1 ₃₃₅₋₃₄₁	
LKKLLEQ ₁₃₋₁₉	Filamin-A-interacting protein 1 ₂₁₁₋₂₁₇	
LLESELV ₁₃₃₋₁₃₉	Leucine-rich repeat-containing protein 71439-445	
AGDSGFA ₁₈₈₋₁₉₄	Myosin-14359-365	

Table 4. Localization of homologous 7-mers in the M protein and human proteins.

The involvement of the E protein in mimicry is hardly possible, but its implication in provoking an autoimmune response (after the destruction of the virus particle) seems very likely.

As a major target, the viral E protein has usually been used for the development of vaccines, specifically against HIV-1⁹, Dengue virus¹⁰, hepatitis B virus¹¹, SARS CoV-2¹² and many other viruses. A deletion of the SARS-CoV E protein reduces pathogenicity and mortality in laboratory animals¹³. In the transmembrane domain of the SARS-CoV E protein, specific critical virulence-determining features have been identified¹⁴.

MADSNGTITVEELKKLLEQWNLVIGFLFLTWICLLQFAYANRNRFLYIIKLIFLWLLWPVTLACFVLAAVYRINWITGGIAIAMACL VGLMWLSYFIASFRLFARTRSMWSFNPETNILLNVPLHGTILTRPLLESELVIGAVILRGHLRIAGHHLGRCDIKDLPKEITVATSR TLSYYKLGASQRVAGDSGFAAYSRYRIGNYKLNTDHSSSSDNIALLVQ

> *Membrane protein.* Membrane protein, 222 aa. In the M protein molecule, we localized six 7-mers homologous to human proteins (Table 4). A N-terminus fragment₁₋₁₉ of the M protein can be represented as follows:

> > MADSNGTITVEELKKLLEQWNLVIGFLF

In the protein M, four 7-dimensional homologues of human proteins are fused into 10-mer VEELKKLLEQ₁₀₋₁₉, the hydrophilic composition of which indicates a possible contact with the external environment, i.e., with the host's immune system, and the involvement in mimicry.

Outside of the 10-mer, we found only two homologous 7-mers. It is unlikely that the M protein is involved in provoking an autoimmune response (after the destruction of the virus particle).

MSDNGPQNQRNAPRITFGGPSDSTGSNQNGERSGARSKQRRPQGLPNNTASWFTALTQHGKEDLKFPRGQGVPINTNSSPDDQ IGYYRRATRRIRGGDGKMKDLSPRWYFYYLGTGPEAGLPYGANKDGIIWVATEGALNTPKDHIGTRNPANNAAIVLQLPQGTT LPKGFYAEGSRGGSQASSRSSSRSRNSSRNSSPGSSRGTSPARMAGNGGDAALALLLLDRLNQLESKMSGKGQQQQGQTVTKK SAAEASKKPRQKRTATKAYNVTQAFGRRGPEQTQGNFGDQELIRQGTDYKHWPQIAQFAPSASAFFGMSRIGMEVTPSGTWLT YTGAIKLDDKDPNFKDQVILLNKHIDAYKTFPPTEPKKDKKKKADETQALPQRQKKQQTVTLLPAADLDDFSKQLQQSMSSAD STQA

Nucleoprotein. Nucleoprotein, 419 aa.

In the N protein molecule, we localized eleven 7-mers homologous to human proteins (Table 5).

The N protein is located completely inside the virus particle and cannot be involved in mimicry. All heptamers homologous to human proteins form several rather long fragments, including the 13-mer $SKQLQQSMSSADS_{404-416}$ and 10-mer $AEGSRGGSQA_{173-182}$, which increases the likelihood of the protein involvement in provoking an autoimmune response.

Nonstructural proteins. All non-structural proteins of SARS CoV-2 are located completely inside the virus particle and, by definition, cannot be involved in the process of mimicry. It remains to consider the possibility of their implication in provoking an autoimmune process.

In N protein	In human proteins	
RPQGLPN ₄₁₋₄₇	GATOR complex protein WDR59757-763	
RGQGVPI ₆₈₋₇₄	Putative uncharacterized protein encoded by LINC00346 $_{154-160}$	
NSSPDDQ ₇₇₋₈₃	NEDD4-binding protein 2 ₁₅₄₋₁₆₀	
GKMKDLS ₉₉₋₁₀₅	Chromodomain-helicase-DNA-binding protein 1-like770-776	
VLQLPQG ₁₅₇₋₁₆₃	Prestin ₉₂₋₉₈	
AEGSRGG ₁₇₃₋₁₇₉	snRNA-activating protein complex subunit3 ₂₋₈	
SRGGSQA ₁₇₆₋₁₈₂	Ras-associating and dilute domain-containing protein ₈₈₆₋₈₉₂	
KADETQA ₃₇₅₋₃₈₁	Myopalladin ₉₀₋₉₆	
LLPAADL ₃₉₄₋₄₀₀	Probable E3 ubiquitin-protein ligase HERC1 ₁₀₉₈₋₁₁₀₄	
SKQLQQS ₄₀₄₋₄₁₀	Codanin-1 ₂₅₉₋₂₆₅	
SMSSADS410-416	Protein PRRC2B ₄₁₆₋₄₂₂	

Table 5. Localization of homologous 7-mers in the N protein and human proteins.

In ORF3a protein	In human proteins	
VGVALLA ₄₈₋₅₄	Manganese-transporting ATPase 13A1 ₈₇₆₋₈₈₂	
LLVAAGL ₉₅₋₁₀₁	Glycerophosphoinositol inositolphosphodiesterase GDPD2 ₁₂₉₋₁₃₅	
KCRSKNP ₁₃₂₋₁₃₈	Vacuolar protein sorting-associated protein 13A ₂₀₆₆₋₂₉₇₂	
SVTSSIV ₁₆₂₋₁₆₈	Protein piccolo ₂₇₇₉₋₂₇₈₅	
TQLSTDT ₂₁₇₋₂₂₃	Septin-14 ₄₁₈₋₄₂₄	

Table 6. Localization of homologous 7-mers in the ORF3a protein and human proteins.

.....

In ORF7a protein	In human proteins
VAAIVFI ₁₀₄₋₁₁₀	Transmembrane protein $255B_{86-92}$
FTLKRKT ₁₁₄₋₁₂₀	Cytosolic 5'-nucleotidase 3A ₃₆₋₄₂

Table 7. Localization of homologous 7-mers in the ORF7a protein and human proteins.

MDLFMRIFTIGTVTLKQGEIKDATPSDFVRATATIPIQASLPFGWLIVGVALLAVFQSASKIITLKKRWQLALSKGVHFVCNLLLLF VTVYSHLLLVAAGLEAPFLYLYALVYFLQSINFVRIIMRLWLCWKCRSKNPLLYDANYFLCWHTNCYDYCIPYNSVTSSIVITSGDG TTSPISEHDYQIGGYTEKWESGVKDCVVLHSYFTSDYYQLYSTQLSTDTGVEHVTFFIYNKIVDEPEEHVQIHTIDGSSGVVNPVME PIYDEPTTTTSVPL

> *ORF3a protein.* ORF3a protein, 275 aa. In the ORF3a protein molecule, we localized five 7-mers homologous to human proteins (Table 6). The 7-mers scattered along the entire length of its molecule do not form long n-mers anywhere else. ORF3a does not appear to be involved in provoking an autoimmune response.

MKIILFLALITLATCELYHYQECVRGTTVLLKEPCSSGTYEGNSPFHPLADNKFALTCFSTQFAFACPDGVKHVYQLRARSVSPKLF IRQEEVQELYSPIFLIVAAIVFITLCFTLKRKTE

ORF7a protein. ORF7a 121 aa.

In the ORF7a protein molecule, we found two 7-mers homologous to human proteins and located in close proximity to each other (Table 7).

It is possible that ORF7a is involved in provoking an autoimmune response.

MIELSLIDFYLCFLAFLLFLVLIMLIIFWFSLELQDHNETCHA

ORF7b protein. ORF7b protein, 43 aa.

In this polypeptide, we found only one 7-mer homologous to the human protein (Table 8). ORF7b may be involved in provoking an autoimmune response, contributing to olfactory dysfunction.

In ORF7b protein	In human protein
IIFWFSL ₂₆₋₃₂	Olfactory receptor 7D4151-157

 Table 8.
 Localization of the homologous 7-mer in ORF7b and a human protein.

.....

In ORF8 protein	In human proteins	
LVFLGII ₄₋₁₀	Zinc finger protein 486 ₄₉₋₅₅	
LGIITTV ₇₋₁₃	D-2-hydroxyglutarate dehydrogenase, mitochondrial ₂₆₂₋₂₆₈	
KLGSLVV ₉₄₋₁₀₀	Sodium leak channel non-selective protein505-511	

 Table 9.
 Localization of homologous 7-mers in the ORF8 protein and human proteins.

.....

In ORF9b protein	In human proteins	
LVDPQIQL ₁₄₋₂₁	Valine—tRNA ligase, mitochondrial ₉₉₆₋₁₀₀₂	
MENAVGR ₂₆₋₃₂	Neprilysin ₄₁₉₋₄₂₅	
LGSPLSL ₄₈₋₅₄	Stress-responsive DNAJB4-interacting membrane protein 1_{37-43}	
GSPLSLN ₄₉₋₅₅	E3 ubiquitin-protein ligase HERC2 ₄₅₃₃₋₄₅₃₉	
TEELPDE ₈₄₋₉₀	KH homology domain-containing protein 4465-471	
ELPDEFVV ₈₆₋₉₃	Maestro heat-like repeat-containing protein family member 2B ₁₀₃₋₁₁₀	

Table 10. Localization some of homologous 7-/8-mers in ORF9b protein and human proteins.

.....

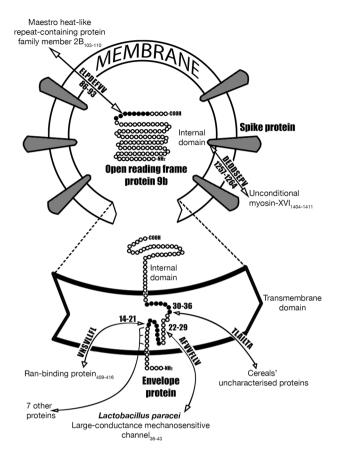
MKFLVFLGIITTVAAFHQECSLQSCTQHQPYVVDDPCPIHFYSKWYIRVGARKSAPLIELCVDEAGSKSPIQYIDIGNYTVSCLPFT INCQEPKLGSLVVRCSFYEDFLEYHDVRVVLDFI

ORF8 protein. ORF8 protein, 121 aa.

The primary structure of SARS-CoV-2 ORF8 is close to that of bat RaTG13-CoV¹⁵. In this polypeptide, there are three 7-mers homologous to human proteins (Table 9).

Due to the fusion of two 7-mers into 10-mer LVFLGIITTV₄₋₁₃, the ORF8 protein can be involved in provoking an autoimmune response.

MDPKISEMHPALRLVDPQIQLAVTRMENAVGRDQNNVGPKVYPIILRLGSPLSLNMARKTLNSLEDKAFQLTPIAVQMTKLAT TEELPDEFVVVTVK


ORF9b protein. ORF9b protein, 97 aa.

In the ORF9b protein molecule, we localized six 7-/8-mers, homologous to human proteins (Table 10).

Some of these 7-/8-mers merge into larger n-mers TEELPDEFVV₈₄₋₉₃ and LGSPLSLN₄₈₋₅₅.

Octamer ELPDEFVV₈₆₋₉₃ is homologous to the Maestro heat-like repeat-containing protein family member 2B (Fig. 1), which may play a role in the sperm capacitation¹⁶. Male reproductive dysfunction was proposed as a likely consequence of COVID-19¹⁷.

After the destruction of the virus particle, ORF9b can take part in provoking an autoimmune response.

Figure 1. The SARS CoV-2 S, E and ORF9b protein molecules contain hepta/octamers that are homologous to proteins in the human body, including some nutrients and intestinal commensal bacteria.

In Replicase polyprotein 1a	In human proteins
EVEKGVLP ₅₅₋₆₂	Bifunctional heparan sulfate N-deacetylase/N-sulfotransferase $1_{214-221}$
ESGLKTIL ₃₉₀₋₃₉₇	Annexin A7 ₄₀₄₋₄₁₁
REETGLLM724-731	Estrogen-related receptor gamma ₃₀₋₃₇
GGSCVLSG ₁₁₀₀₋₁₁₀₇	Sorting nexin-27 ₁₁₂₋₁₁₉
DIQLLKSA ₁₁₂₇₋₁₁₃₄	Echinoderm microtubule-associated protein-like 138-45
RRSFYVYA ₂₄₃₁₋₂₄₃₈	Transmembrane protein adipocyte-associated 1225-232
AKKNNLPF ₂₇₃₃₋₂₇₄₀	Acyl-CoA:lysophosphatidylglycerol acyltransferase 1 ₁₉₉₋₂₀₆
YNYEPLTQ ₃₅₀₀₋₃₅₀₇	DNA helicase ₁₉₉₋₂₀₆
SLKELLQN ₃₅₃₀₋₃₅₃₇	Centromere protein I ₄₉₆₋₅₀₃
DTSLSGFK ₃₆₇₁₋₃₆₇₈	Solute carrier family 12 member 7 ₉₉₅₋₁₀₀₂
PEANMDQE4312-4319	Arachidonate 5-lipoxygenase-activating protein54-61

Table 11. Localization of homologous 8-mers in RPP 1a and human proteins.

MESLVPGFNEKTHVQLSLPVLQVRDVLVRGFGDSVEEVLSEAROHLKDGTCGLVEVEKGVLPQLEQPYVFIKRSDARTAPHGHVMVELVAELEGIQYGRSGETLGVLVPH VGEIPVAYRKVLLRKNGNKGAGGHSYGADLKSFDLGDELGTDPYEDFQENWNTKHSSGVTRELMRELNGGAYTRYVDNNFCGPDGYPLECIKDLLARAGKASCTLSEQLD ${\tt FIDTKRGVYCCREHEHEIAWYTERSEKSYELQTPFEIKLAKKFDTFNGECPNFVFPLNSIIKTIQPRVEKKKLDGFMGRIRSVYPVASPNECNQMCLSTLMKCDHCGETS$ WQTGDFVKATCEFCGTENLTKEGATTCGYLPQNAVVKIYCPACHNSEVGPEHSLAEYHNESGLKTILRKGGRTIAFGGCVFSYVGCHNKCAYWVPRASANIGCNHTGVVG TLETAQNSVRVLQKAAITILDGISQYSLRLIDAMMFTSDLATNNLVVMAYITGGVVQLTSQWLTNIFGTVYEKLKPVLDWLEEKFKEGVEFLRDGWEIVKFISTCACEIV GGQIVTCAKEIKESVQTFFKLVNKFLALCADSIIIGGAKLKALNLGETFVTHSKGLYRKCVKSREETGLLMPLKAPKEIIFLEGETLPTEVLTEEVVLKTGDLQPLEQPTKTLOPVSELLTPLGIDLDEWSMATYYLFDESGEFKLASHMYCSFYPPDEDEEEGDCEEEEFEPSTOYEYGTEDDYOGKPLEFGATSAALOPEEEOEEDWLDDDSOOTVGO QDGSEDNQTTTIQTIVEVQPQLEMELTPVVQTIEVNSFSGYLKLTDNVYIKNADIVEEAKKVKPTVVVNAANVYLKHGGGVAGALNKATNNAMQVESDDYIATNGPLKVG GSCVLSGHNLAKHCLHVVGPNVNKGEDIQLLKSAYENFNQHEVLLAPLLSAGIFGADPIHSLRVCVDTVRTNVYLAVFDKNLYDKLVSSFLEMKSEKQVEQKIAEIPKEE VKPFITESKPSVEQRKQDDKKIKACVEEVTTTLEETKFLTENLLLYIDINGNLHPDSATLVSDIDITFLKKDAPYIVGDVVQEGVLTAVVIPTKKAGGTTEMLAKALRKV PTDNYTTTYPGOGLNGYTVEEAKTVLKKCKSAFYTLPSTTSNEKOETLGTVSWNLREMLAHAEETRKLMPVCVETKATVSTTORKYKGIKTOEGVVDYGARFYFYTSKTT VASLINTLNDLNETLVTMPLGYVTHGLNLEEAARYMRSLKVPATVSVSSPDAVTAYNGYLTSSSKTPEEHFIETISLAGSYKDWSYSGQSTQLGIEFLKRGDKSVYYTSN NHTKKWKYPQVNGLTSIKWADNNCYLATALLTLQQIELKFNPPALQDAYYRARAGEAANFCALILAYCNKTVGELGDVRETMSYLFQHANLDSCKRVLNVVCKTCGQQQTTLKGVEAVMYMGTLSYEQFKKGVQIPCTCGKQATKYLVQQESPFVMMSAPPAQYELKHGTFTCASEYTGNYQCGHYKHITSKETLYCIDGALLTKSSEYKGPITDVFYKE NSYTTTIKPVTYKLDGVVCTEIDPKLDNYYKKDNSYFTEQPIDLVPNQPYPNASFDNFKFVCDNIKFADDLNQLTGYKKPASRELKVTFFPDLNGDVVAIDYKHYTPSFK KGAKLLHKPIVWHVNNATNKATYKPNTWCIRCLWSTKPVETSNSFDVLKSEDAQGMDNLACEDLKPVSEEVVENPTIQKDVLECNVKTTEVVGDIILKPANNSLKITEEV GHTDLMAAYVDNSSLTIKKPNELSRVLGLKTLATHGLAAVNSVPWDTIANYAKPFLNKVVSTTTNIVTRCLNRVCTNYMPYFFTLLLQLCTFTRSTNSRIKASMPTTIAK NTVKSVGKFCLEASFNYLKSPNFSKLINIIIWFLLLSVCLGSLIYSTAALGVLMSNLGMPSYCTGYREGYLNSTNVTIATYCTGSIPCSVCLSGLDSLDTYPSLETIQIT ISSFKWDLTAFGLVAEWFLAYILFTRFFYVLGLAAIMOLFFSYFAVHFISNSWLMWLIINLVOMAPISAMVRMYIFFASFYYVWKSYVHVVDGCNSSTCMMCYKRNRATR VECTTIVNGVRRSFYVYANGGKGFCKLHNWNCVNCDTFCAGSTFISDEVARDLSLQFKRPINPTDQSSYIVDSVTVKNGSIHLYFDKAGQKTYERHSLSHFVNLDNLRAN FVDSDVETKDVVECLKLSHQSDIEVTGDSCNNYMLTYNKVENMTPRDLGACIDCSARHINAQVAKSHNIALIWNVKDFMSLSEQLRKQIRSAAKKNNLPFKLTCATTRQV VNVVTTKIALKGGKIVNNWLKOLIKVTLVFLFVAAIFYLITPVHVMSKHTDFSSEIIGYKAIDGGVTRDIASTDTCFANKHADFDTWFSORGGSYTNDKACPLIAAVITR EVGFVVPGLPGTILRTTNGDFLHFLPRVFSAVGNICYTPSKLIEYTDFATSACVLAAECTIFKDASGKPVPYCYDTNVLEGSVAYESLRPDTRYVLMDGSIIQFPNTYLE GSVRVVTTFDSEYCRHGTCERSEAGVCVSTSGRWVLNNDYYRSLPGVFCGVDAVNLLTNMFTPLIQPIGALDISASIVAGGIVAIVVTCLAYYFMRFRRAFGEYSHVVAF LKLRSDVLLPLTQYNRYLALYNKYKYFSGAMDTTSYREAACCHLAKALNDFSNSGSDVLYQPPQTSITSAVLQSGFRKMAFPSGKVEGCMVQVTCGTTTLNGLWLDDVVY CPRHVICTSEDMLNPNYEDLLIRKSNHNFLVQAGNVQLRVIGHSMQNCVLKLKVDTANPKTPKYKFVRIQPGQTFSVLACYNGSPSGVYQCAMRPNFTIKGSFLNGSCGS VGFNIDYDCVSFCYMHHMELPTGVHAGTDLEGNFYGPFVDRQTAQAAGTDTTITVNVLAWLYAAVINGDRWFLNRFTTTINDFNLVAMKYNYEPLTQDHVDILGPLSAQTINGDRWFLNRFTTTINDFNLVAMKYNYEPLTQDHVDILGPLSAQTINGDRWFLNRFTTTINDFNLVAMKYNYEPLTQDHVDILGPLSAQTINGDRWFLNRFTTTINDFNLVAMKYNYEPLTQDHVDILGPLSAQTINGDRWFLNRFTTTINDFNLVAMKYNYEPLTQDHVDILGPLSAQTINGDRWFLNRFTTTINDFNLVAMKYNYEPLTQDHVDILGPLSAQTINGDRWFLNRFTTTINDFNLVAMKYNYEPLTQDHVDILGPLSAQTINGDRWFLNRFTTTINDFNLVAMKYNYEPLTQDHVDILGPLSAQTINGDRWFLNRFTTTINDFNLVAMKYNYEPLTQDHVDILGPLSAQTINGDRWFLNRFTTTINDFNLVAMKYNYEPLTQDHVDILGPLSAQTINGDRWFLNRFTTTTINDFNLVAMKYNYEPLTQDHVDILGPLSAQTINGDRWFLNRFTTTTINDFNLVAMKYNYEPLTQDHVDILGPLSAQTINGDRWFLNRFTTTTNNDFNLVAMKYNYEPLTQDHVDILGPLSAQTINGDRWFLNRFTTTTNNDFNLVAMKYNYEPLTQDHVDILGPLSAQTINGGIAVLDMCASLKELLQNGMNGRTILGSALLEDEFTPFDVVRQCSGVTFQSAVKRTIKGTHHWLLLTILTSLLVLVQSTQWSLFFFLYENAFLPFAMGIIAMSAFAMMFVK ${\tt H} {\tt K} {\tt {\tt K$ TSNYSGVVTTVMFLARGIVFMCVEYCPIFFITGNTLQCIMLVYCFLGYFCTCYFGLFCLLNRYFRLTLGVYDYLVSTQEFRYMNSQGLLPPKNSIDAFKLNIKLLGVGGK $\label{eq:point} PCIKVATVQSKMSDVKCTSVVLLSVLQQLRVESSSKLWQQCVQLHNDILLAKDTTEAFEKMVSLLSVLLSMQGAVDINKLCEEMLDNRATLQAIASEFSSLPSYAAFATA$ $\label{eq:construction} QEAYEQAVANGDSEVVLKKLKKSLNVAKSEFDRDAAMQRKLEKMADQAMTQMYKQARSEDKRAKVTSAMQTMLFTMLRKLDNDALNNIINNARDGCVPLNIIPLTTAAKL$ VLALLSDLQDLKWARFPKSDGTGTIYTELEPPCRFVTDTPKGPKVKYLYFIKGLNNLNRGMVLGSLAATVRLQAGNATEVPANSTVLSFCAFAVDAAKAYKDYLASGGQP ITNCVKMLCTHTGTGQAITVTPEANMDQESFGGASCCLYCRCHIDHPNPKGFCDLKGKYVQIPTTCANDPVGFTLKNTVCTVCGMWKGYGCSCDQLREPMLQSADAQSFL NGFAV

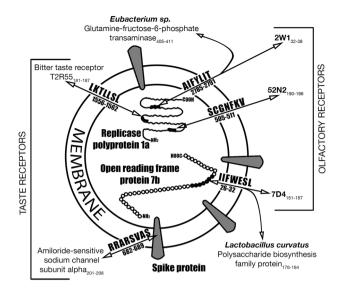
Replicase polyprotein RPP 1a. Replicase polyprotein RPP 1a, 4405 aa.

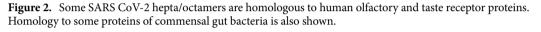
The longest n-mers are underlined.

In the RPP 1a molecule, we localized eleven 8-mers (Table 11) and more than a hundred 7-mers homologous to human proteins.

Some of the 8-mers are found in more than one human protein, some fold into long n-mers, for example EDIQLLKSAYENFNQH₁₁₂₆₋₁₁₄₁, EVEKGVLPQLEQPY₅₅₋₆₈ and SVEEVLSEARQHL₃₄₋₄₆.

In the RPP 1a molecule, 7-mers SCGNFKV₅₀₅₋₅₁₁ and AIFYLIT₂₇₈₅₋₂₇₉₁ are homologous to human olfactory receptor proteins $52N2_{190-196}$ and $2W1_{32-38}$, respectively. A heptamer LKTLLSL₁₅₅₆₋₁₅₆₂ is homologous to the human bitter taste receptor T2R55₁₈₁₋₁₈₇ (Fig. 2).


Replicase polyprotein RPP 1ab. This huge (7096 aa; the primary structure see in¹⁸) molecule contains 210 heptaand octamers homologous to human proteins. Some of them fold into long (more than 15 aa) n-mers.


The possibility of the involvement of replicases in provoking an autoimmune response is debatable. Enzymes in general, and cell cycle enzymes in particular, are evolutionarily highly conserved. Fragments homologous to human proteins must be thrown in huge quantities into the gut lumen during the decay of any microorganism that dies there. It is possible that the interaction of replicases with the host's immune system obeys the laws other than for shorter proteins.

ORF6, ORF10, and ORF14. In these polypeptides (61, 38, and 73 aa, respectively), we did not find 7-/8-mers homologous to human proteins. When assessing the role of SARS CoV-2 proteins in mimicry and provoking an autoimmune response in humans, we considered the following parameters: (i) the number of homologous n-mers; (ii) the compactness of their arrangement in the SARS CoV-2 protein molecules; (iii) intradomain localization (external, transmembrane, internal) of the SARS CoV-2 proteins, and (iv) physiological functions that involve the homologous human proteins (Table 12).

Conclusions

Analysis of homology between the SARS CoV-2 and human proteins led us to the following conclusions. Some of the SARS CoV-2 proteins can be implicated in mimicry that can delay the response of innate immunity to the invasion of virus particles into a macroorganism, and in provoking an autoimmune process that directs a part

Goup of proteins	Protein	Mimicry	Autoimmune response	Comment
Structural	s	+++	+	$Taste? \\ -Amiloride-sensitive sodium channel subunit alpha_{201-208} \\ Muscle contraction? \\ -Unconventional myosin-XVI_{1404-1421} \\$
	Е	-	+++	Gut microbiota?— <i>Lactobacillus paracasei</i> Digestion?—Cereals' proteins
	М	++	-	
	N	-	++	
Nonstructural	ORF3a	-	+	
	ORF6	-	-	No homology
	ORF7a	-	+	
	ORF7b	-	+	Smell?—Olfactory receptor 7D4 Gut microbiota?—Lactobacillus curvatus
	ORF8	-	++	
	ORF9b	-	++	Sperm capacitation?—Maestro heat-like repeat-containing protein family member $2B_{103-110}$
	ORF10	-	-	No homology
	ORF14	-	-	No homology
	RPP1a	-	?	Taste?—T2R55 receptor Smell?—Olfactory receptors 2W1 and 52N2 Gut microbiota?— <i>Eubacterium</i> sp.
	RPP1ab	-	?	

Table 12. Qualitative assessment of the possibility for the SARS CoV-2 proteins to be involved in the processes of mimicry and provoking an autoimmune response.

.....

of the immune response to the proteins of a macroorganism (after the destruction of virus particles). Mimicry is probably more characteristic of the spike (S) protein, and the provocation of an autoimmune response seems to be a distinctive feature of the envelope (E) protein. The ORF7b protein may be involved in the impairment of olfactory receptors, and the S protein may be involved in taste perception dysfunction.

Drugs aimed at destructing or blocking these and alike regions in proteins of SARS CoV-2 and other viruses can enable the human immune system not to succumb to viral deception and destroy the invader shortly after its penetration into a macroorganism. It should also be borne in mind that drugs affecting such imitation regions can damage native proteins present of the human body. Destroying or blocking such regions can weaken the autoimmune response.

Data availability

The highest.

Code availability

Source code of Ouroboros (v. 0.5) is fully available at github. URL: https://github.com/liquidbrainisstrain/ouroboros. Artwork: We used GIMP (Version 2.10.22) to create our artwork. The figures are completely original and have not been published anywhere.

Received: 12 April 2021; Accepted: 2 August 2021 Published online: 25 August 2021

References

- Sanami, S. et al. Design of a multi-epitope vaccine against SARS-CoV-2 using immunoinformatics approach. Int. J. Biol. Macromol. 164, 871–883. https://doi.org/10.1016/j.ijbiomac.2020.07.117 (2020).
- 2. Lederberg, J. Infectious history. Science 288(5464), 287-293 (2000).
- 3. Terekhov, A. Ouroboros (Version 0.5) [Source code]. https://github.com/liquidbrainisstrain/ouroboros.
- Proteomes: Severe acute respiratory syndrome coronavirus 2 (2019-nCoV) (SARS-CoV-2). https://www.uniprot.org/proteomes/ UP000464024 SARS-COV-2, accessed 20 Aug 2020.
- 5. Proteomes: Homo sapiens (Human). https://www.uniprot.org/proteomes/UP000005640 Homo sapiens, accessed 03 Sept 2020.
- Koralnik, I. J. & Tyler, K. L. COVID-19: A global threat to the nervous system. Ann. Neurol. 88(1), 1–11. https://doi.org/10.1002/ ana.25807 (2020).
- 7. Huang, T. & Stähler, F. Effects of dietary Na⁺ deprivation on epithelial Na⁺ channel (ENaC), BDNF, and TrkB mRNA expression in the rat tongue. *BMC Neurosci.* **10**, 19. https://doi.org/10.1186/1471-2202-10-19 (2009).
- Mandala, V. S. et al. Structure and drug binding of the SARS-CoV-2 envelope protein transmembrane domain in lipid bilayers. Nat. Struct. Mol. Biol. 27(12), 1202–1208. https://doi.org/10.1038/s41594-020-00536-8 (2020).
- Li, S. W. *et al.* Gene editing in CHO cells to prevent proteolysis and enhance glycosylation: Production of HIV envelope proteins as vaccine immunogens. *PLoS ONE* 15, e0233866. https://doi.org/10.1371/journal.pone.0233866 (2020).
- Rathore, A. S., Sarker, A. & Gupta, R. D. Production and immunogenicity of Fubc subunit protein redesigned from DENV envelope protein. Appl. Microbiol. Biotechnol. 104, 4333. https://doi.org/10.1007/s00253-020-10541-y (2020).
- Ho, J. K., Jeevan-Raj, B. & Netter, H. J. Hepatitis B Virus (HBV) subviral particles as protective vaccines and vaccine platforms. Viruses 12, 126. https://doi.org/10.3390/v12020126 (2020).
- Abdelmageed, M. J. et al. Design of a multiepitope-based peptide vaccine against the E protein of human COVID-19: An immunoinformatics approach. Biomed. Res. Int. 2020, 2653286. https://doi.org/10.1155/2020/2683286 (2020).
- DeDiego, M. L. et al. Inhibition of NF-κB-mediated inflammation in severe acute respiratory syndrome coronavirus-infected mice increases survival. J. Virol. 88, 913–924 (2014).
- 14. Regla-Nava, J. A. *et al.* Severe acute respiratory syndrome coronaviruses with mutations in the E protein are attenuated and promising vaccine candidates. *J. Virol.* **89**, 3870–3887 (2015).
- Hassan, S. S. et al. A unique view of SARS-CoV-2 through the lens of ORF8 protein. Comput. Biol. Med. 133, 104380. https://doi. org/10.1016/j.compbiomed.2021.104380 (2021).
- 16. MROH2B: Function. https://www.nextprot.org/entry/NX_Q7Z745.
- 17. Sansone, A. *et al.* Addressing male sexual and reproductive health in the wake of COVID-19 outbreak. *J. Endocrinol. Invest.* **44**(2), 223–231. https://doi.org/10.1007/s40618-020-01350-1 (2021).
- Replicase polyprotein 1ab [Severe acute respiratory syndrome coronavirus 2]. https://www.ncbi.nlm.nih.gov/protein/P0DTD1.1? report=fasta.

Author contributions

A.M. and V.K. wrote the main manuscript text. A.T. and D.K. prepared data analysis. All authors reviewed the manuscript.

Funding

This research is an authors' initiative project funded exclusively from their personal sources.

Competing interests

The authors declare no competing interests.

Additional information

Correspondence and requests for materials should be addressed to A.M.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2021