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Introduction

To date, the treatment of neurodegenerative disor-
ders is based on the use of mesenchymal stem 
cells (MSCs). The disease progression is repre-
sented by a neuronal death and the subsequently 
loss of brain and cognitive functions. MSCs seem 
to exert their actions stimulating many physiolog-
ical processes, such as neurogenesis and angio-
genesis, and moreover, they possess a key role in 
the antiapoptotic, immunomodulatory and anti-
inflammatory actions. MSCs are able to differen-
tiate into skeletal and chondrogenic tissues and 
also in neurons and glial cells.1 Oral tissues are 
considered an easy accessible source of MSCs 
with no ethical issues. In oral cavity, six different 
human adult dental stem cells have been described: 

dental pulp stem cells (DPSCs),2,3 exfoliated 
deciduous teeth stem cells (SHED),4 periodontal 
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ligament stem cells (PDLSCs),5 apical papilla 
stem cells (SCAP),6 dental follicle stem cells 
(DFSCs),7 and gingiva stem cells.8,9

In particular, human periodontal ligament stem 
cells (hPDLSCs) are multipotent postnatal stem 
cells that have been used as a model for studying in 
vitro neurological diseases and to study their dif-
ferentiation potential and immunomodulatory prop-
erties.10–12 hPDLSCs are obtained from healthy 
donors by minimally invasive procedure, and they 
are able to maintain the stemness features after 
long-term passages rather than the differentiation 
capacity.13 Moreover, hPDLSCs are easy to expand 
and manipulate in vitro and when transplanted do 
not trigger a host immune response.14,15

Short peptides (di, tri, and tetrapeptides) are 
signaling molecules capable of interacting with 
DNA and histone proteins, acting as regulatory 
factors.16 A number of studies have demon-
strated the effect of short peptides on the prolif-
eration and differentiation of stem cells. The 
inhibitory effect of EDP (Glu-Asp-Pro) and 
KED (Lys-Glu-Asp) peptides on the prolifera-
tion of embryonic and immortalized cells is pre-
viously shown, which may be evidence of their 
antitumor activity. EDP peptide enhances the 
spontaneous proliferative activity of normal 
lymphocytes, which may indicate the stimulat-
ing effect of peptides on non-neoplastic immune 
cells of adult donors.17

The effect of pineal gland and cerebral cortex 
synthetic peptides on the differentiation of the pluri-
potent ectodermal tissue of the early gastrula of the 
spiny frog Xenopus laevis is demonstrated. The 
AEDG (Ala-Glu-Asp-Gly) peptide stimulated the 
differentiation of the polypotent tissue into the epi-
dermis and neural tissue, and the AEDP peptide 
induced the development of the mesenchyme and 
epidermis. The ADEL (Ala-Asp-Glu-Leu) peptide 
activated the expression of the proliferative markers 
Ki67 and Mcl-l in cultures of human bronchial epi-
thelium when it was aging in passages. The AEDL 
peptide also regulated the expression of genes 
involved in the differentiation of bronchial epithelial 
cells: NKX2-1, SCGB1A1, SCGB3A2, FOXA1, and 
FOXA2. This peptide stimulated the expression of 
the genes MUC4, MUC5AC, and SFTPA1, the 
reduced expression of which correlates with the 
occurrence of pulmonary pathologies.18

EDA (Glu-Asp-Ala) and KED peptides increased 
proliferative activity of cortical thymocytes and 

activated their differentiation into regulatory T 
cells, preventing their apoptosis.19

KEDW(Lys-Glu-Asp-Trp) peptide has the abil-
ity to induce differentiation and functional activity 
of various types of endocrine pancreatic cells.20

Thus, short peptides are involved in the regula-
tion of proliferation and differentiation processes 
in various types of cells and tissues. The aim of this 
study was to investigate the effect of short peptides 
AED (Ala-Glu-Asp), KED, KE (Lys-Glu), and 
AEDG and also their mixtures on the initial stages 
of neuronal differentiation and proliferation of the 
primary culture of human periodontal ligament 
hPDLSCs. In particular, KED peptide regulates 
stem and immune cells differentiation, showing 
neuroprotective, vasoprotective, and skin protec-
tive effects. AED peptide possesses protective 
effect to skin fibroblasts and cartilaginous tissue. 
KE peptide has reparative, oncostatic, and immu-
nomodulatory activities and stimulates immune 
cells differentiation. AEDG peptide is a geropro-
tector and retinoprotector and regulates pineal 
gland and kidney function.

Materials and methods

hPDLSCs culture establishment

hPDLSCs were collected from periodontal liga-
ment biopsies after informed consent on 10 
patients. In this study, we enrolled 5 male and 5 
female patients (age range: 20–40 years). All vol-
unteers were exempt from systemic and oral dis-
eases. Biopsies were obtained from the alveolar 
crest and horizontal fibers of the PDL by scraping 
the roots of non-carious third molar teeth with 
Gracey’s curettes. hPDLSCs were cultured in 
xeno-free medium without animal-derived mole-
cules, Mesenchymal Stem Cell Growth Medium-
Chemically Defined (MSCGM-CD), according to 
Diomede et  al.21 Briefly, plastic-adherent cells 
were migrated from tissue explants and isolated 
using 0.1% trypsin solution. Cells were plated in 
Petri dishes at a density of 1 × 103 cells/cm2. Cells 
at passage 2 were used in all experiments.

hPDLSCs characterization and differentiation

Cytofluorimetric detection was performed as previ-
ously described by Rajan et al.22 Expression of Oct 
3/4, Sox-2, SSEA-4, CD14, CD29, CD34, CD44, 
CD45, CD73, CD90, and CD105 was evaluated on 
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hPDLSCs. The analysis was performed by using 
FACStarPLUS flow cytometry system and the 
FlowJo™ software (TreeStar, Ashland, OR, USA).

To assess the ability to differentiate into osteo-
genic and adipogenic lineage, hPDLSCs were 
maintained under osteogenic and adipogenic con-
ditions for 21 and 28 days, respectively, as reported 
by Cianci et al.23

After the differentiation time, alizarin red and 
adipo oil red staining were performed on undiffer-
entiated and differentiated cells, in order to evalu-
ate the formation of mineralized precipitates and 
lipid vacuoles. The observations were carried out 
at inverted light microscopy Leica DMIL (Leica 
Microsystem, Milan, Italy). Moreover, the expres-
sions of RUNX-2, ALP, FABP4, and PPARγ genes 
were evaluated by reverse transcription polymer-
ase chain reaction (RT-PCR) as reported by Cianci 
et al.23 T-test was used to assess the P value, con-
sidering data significant when P < 0.05.

Short peptides

In this study, we use four short peptides (AEDG, KE, 
AED, and KED) and their mixture. Biological activi-
ties of each peptide have been reported in Table 1.

Experimental design

hPDLSCs were divided into six different cultures: 
hPDLSCs cultured without peptides (control 

group); hPDLSCs cultured with AEDG (the first 
group); hPDLSCs cultured with KE (the second 
group); hPDLSCs cultured with AED (the 
third group); hPDLSCs cultured with KED (the 
fourth group); and hPDLSCs cultured with a mix 
of all abovementioned peptides together (the fifth 
group). All the peptides were diluted in phosphate-
buffered saline (PBS) at a concentration of 0.01 µg/
mL and were added to cell medium and replaced 
every 3 days. The cells were placed at 37°C in a 
humidified 5% CO2 incubator. Cells maintained in 
MSCGM-CD were used as control cells. After 
10 days of induction, differentiated and undifferen-
tiated cells treated or not with peptides were col-
lected for subsequent analysis.

MTT assay

The viability of hPDLSCs in each group was ana-
lyzed by the quantitative colorimetric MTT assay 
(3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetra-
zolium bromide test; Promega, Milan, Italy); 
2 × 103 cells/well were seeded into a 96-well culture 
plate for 24, 48, and 72 h and 1 week of culture. At 
each endpoint, 20 μL of MTT solution was added at 
each well; after 3 h of incubation, supernatants were 
read at 650 nm wavelength using a ND-1000 Nano- 
Drop Spectrophotometer (NanoDrop Technologies, 
Rockland, DE, USA).38 The MTT assay was achieved 

Table 1.  AED, KED, KE, and AEDG peptides’ biological activity.

Peptide Biological activity

KED 1. �Decreased proliferation embrional mesenchymal stem cells, rat’s fibroblasts (line KF-1), and human eritromielosis cell 
line K-562.15

2. �Amplified human cortical thymocytes’ differentiation toward regulatory T cells, increased proliferative activity, 
decreased level of its apoptosis, and stimulated proliferative and antiapoptotic activity of the mature regulatory T cells.19

3. �Increased spine density up to 32% in cortical–striatal neurons in the cell culture from brain of YAC128 mice (mouse 
model of Huntington disease).24

4. �Increased the amount of mushroom spines in hippocampal neurons in Alzheimer disease culture mouse model by 20%.25

5. Stimulated serotonin expression in neuronal cell culture.26

6. Decreased MMP9 expression and increased Ki67 and CD98hc expression in primary rat’s skin fibroblasts.27

7. Vasoprotective effect in human and rat’s vessel.28

AED 1. Normalization of cartilaginous tissue functions, for example, in human with osteoartrosis.29

2. �Decreased MMP9 and Caspase-3 expression and increased Ki67 and CD98hc expression in primary rat’s skin 
fibroblasts.27

KE 1. Stimulated reparation processes in various tissues.30

2. Immunoprotective effects, stimulated T-cell differentiation, tumor suppressor, and geroprotector.31

3. Increased Ki67 and CD98hc expression in primary rat’s skin fibroblasts.27

AEDG 1. Prolonged life of animals, increased telomere length.31,32

2. Increased melatonin synthesis in pineal gland during aging.33,34

3. Induced retinal cells differentiation, retinaprotector.35,36

4. Normalized renal function in pathology model in rats.37
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in three independent experiments and three replicates 
for each experimental point.

Neuronal differentiation induction

hPDLSCs were seeded and maintained for 
10 days in Neurobasal-A Medium (Gibco®; Life 
Technologies, Monza, MB, Italy) containing B27 
(2%; Life Technologies), L-glutamine (2 mM; 
Life Technologies), penicillin (100 U/mL; Life 
Technologies), streptomycin (100 mg/mL; Life 
Technologies), amphotericin B (5 mg/mL; Life 
Technologies; neuroinductive medium) and sup-
plemented with basic fibroblast growth factor 
(FGF; 20 ng/mL; TemaRicerca, Milan, Italy). 
The medium will be changed every 3 days, as 
previously described by Trubiani et al.39

Confocal laser scanning microscopy analysis

Control and neural differentiated cells from all 
groups were fixed for 30 min at room tempera-
ture with 4% of paraformaldehyde in 0.1 M 
sodium phosphate-buffered saline (PBS),40 pH 
7.4, and permeabilized with 0.1% of Triton1-X100 
in PBS for 10 min, followed by blocking with 5% 
skimmed milk in PBS for 30 min. Samples were 
incubated with rabbit primary monoclonal anti-
body, anti-Nestin 1:200 (Santa Cruz Biotech- 
nology, Inc., Dallas, TX, USA), and mouse anti-
Growth-Associated Protein 43 (GAP43; Sigma 
Aldrich, Milan, Italy) as a primary antibody and 
anti-rabbit Alexa Fluor 568 probe (Molecular 
Probes; Life Technologies, Monza, MI, Italy) 
and anti-mouse Alexa Fluor 488 probe 
(Molecular Probes) as a secondary antibody.41 
All samples were incubated with Alexa Fluor 
568 phalloidin red fluorescence conjugate 
(1:200), as a marker of the actin cytoskeleton 
and with TO-PRO staining to highlight the 
nuclei. As markers of neuronal differentiation, 
the following signal molecules of GAP43 and 
Nestin were chosen.

Samples were observed using a Zeiss LSM510 
META confocal (Zeiss, Jena, Germany) connected 
to an inverted Zeiss Axiovert 200 microscope 
equipped with a Plan Neofluar oil-immersion 
objective (40×/1.3 NA). Images were collected 
using an argon laser beam with excitation lines at 
488 nm and a helium–neon source at 543 and 
633 nm.

The percentages of GAP43 and Nestin-positive 
cells were quantified based on the 10 images ran-
domly collected.

Western blot analysis

An amount of 30 µg of proteins obtained from 
undifferentiated and neurogenic-differentiated 
hPDLSCs of all groups were processed as previ-
ously described by Libro et  al.42 Membranes 
were incubated with primary antibody rabbit 
anti-Nestin (1:750, rabbit; Sigma-Aldrich, Milan, 
Italy), GAP43 (1:750, rabbit; Sigma-Aldrich), 
and beta-actin (1:750, mouse; Santa Cruz 
Biotechnology, Santa Cruz, CA, USA). After five 
washes in PBS containing 0.1% Tween-20, sam-
ples were incubated for 1 h at room temperature 
with peroxydase-conjugated secondary antibody 
anti-rabbit and anti-mouse diluted 1:2.000 in  
1× PBS, 3% milk, and 0.1% Tween. Protein 
expression was detected using the enhanced 
chemiluminescence (ECL) detection system 
(Amersham Pharmacia Biotech, Pittsburgh, PA, 
USA) with photodocumenter Alliance 2.7 
(Uvitec, Cambridge, UK). Signals were captured 
by ECL detection system and analyzed using an 
UVIband-1D gel analysis (Uvitec).

Statistical analysis

GraphPad Prism version 6.0 (GraphPad Software, 
La Jolla, CA, USA) was used for statistical data 
analysis. Data were expressed as means and 
standard deviation of the recorded dependent 
variables. The differences among the levels of 
the factor under investigation were evaluated 
performing distinct two-way analysis of variance 
(ANOVA) tests. Tukey tests were applied for 
pairwise comparisons. A value of P < 0.05 was 
considered statistically significant in all tests.

Results

hPDLSCs characterization and differentiation

Cytofluorimetric results showed the positivity 
for Oct 3/4, Sox-2, SSEA-4, CD29, CD44, CD73, 
CD90, and CD105; meanwhile, cells showed a 
negativity for CD14, CD34, and CD45 (Figure 
1(a)). hPDLSCs also showed the ability to dif-
ferentiate toward osteogenic and adipogenic 
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commitment as determined by RT-PCR obtained 
data (Figure 1(b)–(c)). In Figure 1(d), representa-
tive light microscopy pictures displayed a posi-
tive staining of alizarin red for osteogenic 
commitment (Figure 1(d1)) and oil red positivity 
for adipogenic differentiation (Figure 1(d2)).

Proliferation rate

MTT assay at 24, 48, 72, and 1 week indicated that 
peptides did not induce an inhibition on cell prolif-
eration, and also, the combination of these peptides 
showed a positive action on the proliferation rate 
starting at 1 week of culture (Figure 2).

Study of the effect of peptides on 
neuronal differentiation of hPDLSCs by 
immunofluorescence analyses

Immunofluorescence confocal microscopy images 
showed that the peptides AEDG, KE, AED, and 
KED and their mixture increased the synthesis of 
the GAP43 protein in hPDLSCs cultures compared 

to the control cells (Figure 3(a1)–(e1)). In differen-
tiated hPDLSCs, there was an increase in GAP43, 
especially in cells treated with the mixture and 
KED (Figure 3(a2)–(e2)).

Nestin protein expression was evaluated in con-
trol and neuronal differentiated hPDLSCs treated 
and untreated with AEDG, KE, AED, and KED 
and their mixture. A higher expression of Nestin in 
control and differentiated cells treated with KED 
and the mixture was evident (Figure 4(e1), (f1), 
(e2), and (f2)). Bar graphs reported in Figures 3 
and 4 showed that more than 50% of differentiated 
cells treated with peptides mixture were positive 
for GAP43 and Nestin, respectively, when com-
pared to the differentiated cells with no peptides 
treatment.

Western blot analysis

Western blot analysis confirm confocal micros-
copy data, and the mixture of AEDG, KE, AED, 
and KED peptides induced an increase of GAP43 
expression in undifferentiated hPDLSCs, and 

Figure 1.  hPDLSCs characterization and differentiation. (a) Cytofluorimetric evaluation of hPDLSCs. (b) RT-PCR bar graph of 
osteogenic-related markers in undifferentiated and differentiated cells. (c) RT-PCR bar graph of adipogenic-related markers in 
undifferentiated and differentiated cells. (d) Light microscopy images of (d1) alizarin red staining, (d2) oil red staining, and (d3) 
toluidine blue undifferentiated cells (scale bar: 10 µm).
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Figure 2.  MTT assay. Proliferation rate of hPDLSCs after the treatment with AEDG, KE, AED, and KED and the mixture of all 
peptides at 24, 48, and 72 h and 1 week of culture (*P < 0.05).

Figure 3.  Effect of peptides on the expression of GAP43 in hPDLSCs. (a1) Untreated hPDLSCs cultured in basal conditions. 
(a2) Untreated hPDLSCs cultured in neuroinductive medium. (b1) hPDLSCs cultured in basal conditions treated with AEDG. (b2) 
hPDLSCs cultured in neuroinductive medium treated with AEDG. (c1) hPDLSCs cultured in basal conditions treated with KE. (c2) 
hPDLSCs cultured in neuroinductive medium treated with KE. (d1) hPDLSCs cultured in basal conditions treated with AED. (d2) 
hPDLSCs cultured in neuroinductive medium treated with AED. (e1) hPDLSCs cultured in basal conditions treated with KED. (e2) 
hPDLSCs cultured in neuroinductive medium treated with KED. (f1) hPDLSCs cultured in basal conditions treated with mixture 
of peptides. (f2) hPDLSCs cultured in neuroinductive medium treated with mixture of peptides. The bar graphs represent the 
percentage of positive cells for Nestin (**P < 0.05). Cell nuclei are dye-colored DAPI—blue fluorescence, GAP43—Alexa Fluor 
568—red fluorescence, and actin expression—Alexa Fluor 488—green fluorescence (bar: 5 µm).
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this effect was more evident in differentiated 
hPDLSCs compared to the undifferentiated cells 
and to untreated differentiated hPDLSCs. Also, 
the results of western blot analysis indicate that 
the mixture of all peptides and the KED peptide 
affected GAP43 expression, increasing the 
expression of this growth factor compared with 
the control samples (Figure 5). The results about 
Nestin expression in hPDLSCs cultures confirm 
the immunofluorescence data. Thus, in hPDLSCs 
maintained under differentiation culture condi-
tions and with KED peptide or peptide mixture 
treatments, the expression of Nestin signifi-
cantly increased compared with the control cells 
(Figure 5).

Discussion

In the treatment of neurodegenerative diseases, tis-
sue repair and regeneration are the best expected 
outcomes, as in the stem cells–based therapy. 
hPDLSCs possess the peculiarity features of the 
MSCs, as self-renewal, immunomodulatory, clono-
genicity, and multi-tissue differentiation potential.23 
Improved and extended survival time of stem cells in 
transplantation is one of the main objectives of 
research in regenerative medicine.43 MSCs are able 
to differentiate toward different lineages, as osteo-
genic, adipogenic, chondrogenic, and neurogenic 
commitment. Homeostasis is a complex process reg-
ulated by peptides that lead to the aging cells, tissues, 
and organs. Morphological and functional aging 

Figure 4.  Effect of peptides on Nestin expression in hPDLSCs. (a1) Untreated hPDLSCs cultured in basal conditions. (a2) 
Untreated hPDLSCs cultured in neuroinductive medium. (b1) hPDLSCs cultured in basal conditions treated with AEDG. (b2) 
hPDLSCs cultured in neuroinductive medium treated with AEDG. (c1) hPDLSCs cultured in basal conditions treated with KE. (c2) 
hPDLSCs cultured in neuroinductive medium treated with KE. (d1) hPDLSCs cultured in basal conditions treated with AED. (d2) 
hPDLSCs cultured in neuroinductive medium treated with AED. (e1) hPDLSCs cultured in basal conditions treated with KED. (e2) 
hPDLSCs cultured in neuroinductive medium treated with KED. (f1) hPDLSCs cultured in basal conditions treated with mixture 
of peptides. (f2) hPDLSCs cultured in neuroinductive medium treated with mixture of peptides. The bar graphs represent the 
percentage of positive cells for Nestin (**P < 0.05). Cell nuclei are dye-colored DAPI—blue fluorescence, Nestin—Alexa Fluor 
568—red fluorescence, and actin—Alexa Fluor 488—green fluorescence (bar: 5 µm).



8	 International Journal of Immunopathology and Pharmacology ﻿

consists in the involution of organs and tissues, 
referred to nervous, endocrine, and immune sys-
tems.44 Small isolated peptides revealed a pro-
nounced tissue-specific activity in cell cultures and 
in animal model.45 Peptides showed a stimulation 
and increase in protein synthesis in tissue-specific 
derived cells.46

In our study, hPDLSCs cultures have been used to 
evaluate the in vitro effects of AEDG, KE, AED, and 
KED and their mixture. MSCs derived from oral 
cavity become increasingly important for their neu-
ral crest origin, for their easy accessibility, and for 
their manipulation.47 The PDLSCs are able to differ-
entiate into mesengenic and neurogenic lineages.48

During neurogenic differentiation, hPDLSCs 
change their mesenchymal phenotype and fibroblast-
like shape and progressively assume neuronal-like 
features with cytoskeleton actin rearrangement. 
Neurogenic-differentiated cells showed the cytoskel-
eton actin, thick actin bundles at cell periphery with 
a rounded cell body with thin neurite-like processes.

Biological activity of natural peptides is widely 
studied, and it appeared to be similar in standard 
testing tissue cultures and in animal model,49,50 as 

also demonstrated in our in vitro cellular model; 
AEDG, KE, AED, and KED and their mixture do 
not negatively influence the proliferation rate, but 
hPDLSCs maintain the logarithmic proliferation 
rate at different end-point.

To validate the peptide effects on the neurogenic 
process, GAP43 and Nestin expression was evalu-
ated. GAP43 (Growth-Associated Protein 43) is a 
protein of neuronal plasticity, since high levels of its 
expression are observed in the cone of axon growth 
during its development, in axonal regeneration, and 
after long-term potentiation (LTP).51 This protein  
is a key component of the axon and presynaptic  
terminus. Mutation in the gene Gap43 leads to axon 
atrophy a few days after its formation.52 Due to  
the cysteine site, GAP43 is able to bind to lipid rafts, 
the main components of cell membranes that coor-
dinate neurotransmission and neuroplasticity.53,54 
Participation of GAP43 protein in the learning pro-
cess was demonstrated.55 GAP43 protein is a sub-
strate for protein kinase C. Phosphorylation of 
protein kinase C serine at position 41 in GAP43 
regulates neuron formation, regeneration, and syn-
aptic plasticity.39,56

Figure 5.  Western blot of GAP43 and Nestin protein expression in undifferentiated and neurogenic-differentiated hPDLSCs. Specific 
bands of GAP43 protein with related densitometric analyses. Specific bands of Nestin protein with related densitometric analyses.
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Nestin refers to the type VI of intermediate fil-
ament proteins (FP), and it is more expressed in 
neuron cells, where it is responsible for the growth 
of the axon in the radial direction. In most cases, 
type VI FP proteins in tissues are assembled into 
heteropolymers. It has been shown that nestin 
forms heterodimers and heterotetramers, but does 
not independently form FP in vitro.57 Nestin is 
expressed by various types of cells during their 
differentiation. Nestin is expressed in dividing 
cells at the early stages of their development in 
the central nervous system (CNS) and peripheral 
nervous system.58 After neuronal differentiation, 
nestin expression is suppressed, and it is replaced 
by tissue-specific proteins of neurofilaments.59 
Nestin expression is re-induced in the adult body 
in pathological conditions, for example, in glial 
scar resulting from a CNS trauma.60 Thus, nestin 
is used as a marker of progenitor cells in the CNS.

hPDLSCs showed a high capacity to differenti-
ate into neurogenic lineage given their embryolog-
ical origin from neural crest.61 Immunofluorescence 
data on neurogenic committed hPDLSCs have 
shown that GAP43 and nestin increased their 
expression and the protein levels in peptide-treated 
cells. In particular, KED and peptide mixture 
showed the major effects on hPDLSCs in terms of 
the enhancement of GAP43 and nestin expression.

MTT test showed that AED, KED, KE, and 
AEDG peptides and their combination stimulate 
hPDLSCs proliferation. It has been reported that 
KE peptide and AED peptide, which stimulate 
proliferation of immune cells and fibroblasts,27,31 
can potentiate proliferation activity and have a 
proliferation effect in hPDLSCs. KED peptide in 
previous investigation decreased stem cell prolif-
eration, but stimulates thymocytes and skin fibro-
blast proliferation.19 May be that effect of this 
peptide is dependent of cell type and stage of its 
differentiation. Also, KED peptide can decrease 
or potentiate proliferation activity of peptides.

We can suppose that KED peptide can activate 
neuronal differentiation, and it is the reason of neu-
roplasticity processes activation. GAP43 and nes-
tin expression have been upregulated by KED and 
the peptides mixture indicating their role in the 
enhancement of neurogenic commitment.

In conclusion, short peptides could be employed 
as a supplementary substance in culture medium to 
enhance neurogenic differentiation capacity in 
vitro for future regenerative cell therapy.
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